FPGA Based Efficient Interface Model for Scale-Free
Computer Network using I12C Protocol

P.Venkateswaran, Arindam Sanyal, Snehasish Das, S.K.Sanyal and R.Nandi

Electronics & Tele-Communication Department, Jadavpur University, kolkata-700 032 INDIA
pvwn@yahoo.co.in, arindam_3110@yahoo.co.in, snehasishetce@yahoo.co.in,
s_sanyal@ieee.org, robnon@ieee.org

Abstract. Devices communicating with each other over a serial bus must have
some protocol to avoid data loss, as well as enabling faster devices to commu-
nicate with slower ones. In a network, there may be several electronic modules
across which a communication link has to be established. There must be some
algorithm to solve conflicts between the contending nodes in the network. In
this design, we have implemented an efficient network interface model which
can prevent data loss due to collisions. The proposed interface model follows
the 12C protocol with a slight change in the manner in which the data transfer is
initiated or terminated. The I2C bus is a true multimaster bus which includes
arbitration safeguards against data collisions. The interface model described
can be used to connect any number of devices to a network.

1 Introduction

The I°C bus has become the de-facto world standard that is now used in different In-
tegrated Circuits(ICs). The advantages of using I°C are numerous and by employing
the I°C protocol in a design, much of the auxiliary support circuitry such as address
decoders and standard logic gates needed for communications can be eliminated. In
an I°C bus there is no central server to resolve the data conflicts. The collisions are
prevented using the wired-and configurations of the Serial DAta (SDA) line and the
Serial CLock (SCL) line, and the data loss is prevented by the fact that every byte on
the SDA line has to be followed by an acknowledge. The important I°C bus specifi-
cations[1] are described in Section 2. The network interface design presented in this
paper can be used to interconnect any number of devices on a network efficiently as
long as the total capacitance limit is not exceeded. The model can be a master or a
slave or a combination of both. The model can be used as an initiator to start/stop all
possible data transfers. The model can be used as target (slave) device which detects
start/stop conditions and perform data transfer according to the master’s request. The
model is capable of handling traffic and detecting faults, if any, on the bus. Moreover,
if data transfer is to be done intermittently, the chip can be used in parallel for differ-
ent applications. The implementation[2] methods are given in Section 3 and the per-
formance results of the proposed model using simulation is given in Section 4.

© A. Gelbukh, S. Suarez. (Eds.) Received 07/07/06
Advances in Computer Science and Engineering. Accepted 03/10/06
Research in Computing Science 23, 2006, pp. 191-198 Final version 12/10/06

192 Venkateswaran P., Sanyal A., Das S., Sanyal S. and Nandi R.

2 I2C Bus Specification

The I°C bus is built around a two-wire serial bus, SDA (serial data) and SCL (serial
clock). Each device is recognized by a unique address, and can operate either as a
transmitter or as a receiver. The I’C master is the device that initiates a transfer and
generates the clock for the same. Any device addressed by the master is the slave. If
more than one master attempts to transmit at the same time, there will be a conflict.
The I’C specification resolves this conflict by its arbitration process. Before explain-
ing the arbitration process, the basic I’C characteristics is given in Section 2.1.

2.1 I12C Characteristics

The SDA and SCL lines are bi-directional lines connected to a positive voltage supply
through a pull-up resistor. The bus is free when these lines are high. The data on the
SDA line is valid only when the SCL line is low. During data transfer, the master
generates the START and STOP conditions, which are unique conditions. A high to
low transition on the SDA line while the SCL line is high, indicate the START condi-
tion, while a low to high transition on the SDA line while the SCL line is high, indi-
cate the STOP condition (Fig. 1). The START and STOP conditions are always gen-
erated by the master. The bus is considered to be busy if a START condition is
generated.

—
o TN/ \
I I -
I I L
SCL ,' Y / Y £
S L
START mmniditinn STOP condition

Fig. 1. START and STOP condition

2.2 Acknowledge

Every data put on the SDA line is 8-bits long. Each byte has to be followed by an ac-
knowledge bit (Fig.2).

After transferring each byte, the master frees the SDA line for the slave to send
the acknowledge bit. The slave sends the ACK by pulling the SDA line low. The
master reads the SDA line in the next clock pulse and senses the acknowledge. If the
slave cannot accept the data due to some reason, it sends a NAK (No-AcKnowledge)
by leaving the SDA line high. The master sends the NAK and can either stop the
transfer or initiate a restart

FPGA Based Efficient Interface Model for Scale-Free Computer Network 193

r—

DATA CUTPUT 7Y
BY TRANSMITTER |
I
[
|
|

A G O S

not acknowledge \‘

acm-m.'le-:lge;
SCLFROM
N\ A EA AT

DATAQUTRUT
EY RECEIVER

L] ehck plse for
START
condiion acknowledgement

Fig. 2. Acknowledge on the I°C bus

2.3 Clock Synchronization

The SCL lines of the I’C bus have wired-and connection. This plays an important
role in clock synchronization. The wired-and connection implies that the I’C device
with the lowest low period will hold the SCL line low. If the slave is busy to service
an internal request and needs more time to respond to the master’s request, it can pull
the SCL low. As long as the SCL is held low by the slave, the master cannot bring it
to the high state. This is known as ‘clock stretching’.

2.4 Arbitration

The SDA lines also have wired-and configurations like the SCL lines. This fact is
used in arbitration of the I°C bus. A master may transfer data only if the bus is free.
Now two or more masters may attempt to transfer data at the same time by initiating a
START condition simultaneously. Arbitration takes place on the SDA line while the
SCL line is at the high level such that the master transmitting a high while another
master is transmitting a low, will lose the control of the bus. Arbitration may con-
tinue for several bits. Its first stage is the comparison of the address bits. If both the
masters are trying to address the same slave, then the arbitration will continue into
the data bits till one of the masters attempt to transmit a high while another is trans-
mitting a low. The losing master will then release its SDA line and will revert to the
slave mode if it is being addressed by the winning master. The winning master’s ad-
dress and data are the only valid items on the I’C bus and nothing is lost in the arbitra-
tion process.

2.5 Addressing Format
The multiple devices on the I’C bus can be differentiated using their addresses. The

I°C devices can be addressed using a 7-bit addressing or a 10-bit addressing. The 7-
bit addressing format is described as we have used this format in our network inter-

194 Venkateswaran P., Sanyal A., Das S., Sanyal S. and Nandi R.

face model. The first byte sent on the I’C bus after the start is usually an address
byte. One exception involves sending a “general call” address following the start
condition. The “general call” addresses everyone on the I°C bus. Any device not
wishing to listen to the “general call” can do so by not sending an acknowledge to the
master. The addressing scheme is shown in Fig. 3.

| 7 bit slave address | Read/write |

Fig. 3. The first byte after START

The bits 7 through 1 of the address byte carry the I’C address information and the last
bit, bit 0 determines if the I?C operation will be a read or write. A zero in bit 0 tells
the slave that the master will be writing data to the slave device, and conversely a 1
in the Isb (least significant bit) tells the slave that the master will read information
from the slave. Only the device that contains a match for the first seven bits will ul-
timately respond to the master

3 Implementation of the Proposed Interface

The proposed network interface consists of a master section and a slave section(Fig.
4). The internal signals have not been shown for the sake of simplicity. The details
of the master and slave blocks are shown in figs. 5 and 6 respectively. The device can
function as a master or a slave depending on the stimuli provided. In this design, we
have modified the I’C protocol by changing the generation of START and STOP
conditions. In the I’C protocol the START condition is denoted by the master pulling
down the SDA line while the SCL is high. Similarly, a master signals end of trans-
mission by taking back the SDA to high state while the SCL is high. We have made
the interface respond only to the rising and falling edges of the SCL[3]. Checking for
the START or STOP conditions involves continuously monitoring the SDA line for
changes while the SCL is high. This implies that the interface will be busy for half of
the clock period doing practically nothing. So we have used an alternate method to
utilize the high state of the clock in performing data shifting operations between the
user and the interfacing device so that data can be transferred between the communi-
cating ICs with minimum of delay. The data initiation and termination signals are in-
stead generated and conveyed to all the ICs in the network through a common BUS
line. The interface is a three wire device consisting of the SDA, SCL and the BUS
lines. The state of the bus at any time is reflected by the BUS line. If a transfer is in
progress, the BUS line is at a low state to signify that the bus is busy. The master
senses the state of the I°C bus through a signal called BUS. All the BUS lines of the
devices have a wired-and configuration like the SDA and SCL lines. The I°C bus is
free if the BUS is at a high state. Any master attempting to transmit, first senses
whether the BUS is at a high state. If the BUS is high, the master immediately cap-
tures the I°C bus by pulling down the BUS line to a low state. If two masters attempt
to capture the bus at the same time, then the winning master is decided by following
the I°C arbitration logic. The START and STOP signal generation and detection can
be performed in another way which follows the I°C specification. This involves gen-

FPGA Based Efficient Interface Model for Scale-Free Computer Network 195

eration of another clock signal which is delayed by a fixed time period from the
SCL signal. This delayed clock signal is locally generated by all the devices con-
nected to the network from the SCL signal which is clocked by the master. Then in-
stead of having to continuously monitor the SDA line for changes when the SCL is
high, the SDA has to be checked for a change only after a fixed time from the rising
edge of the SCL. But this method involves generation of very accurate delays and it
also has to take the propagation delay of the SDA and SCL signals into consideration.
From our experiments we have seen that delay in SDA is usually not equal to the de-
lay in the SCL line and hence this second method requires greater coding effort. The
unequal delays are also to be expected as the SDA changes only a certain time after
rising or falling edges of the SCL. The master and slave are further divided into
smaller functional units. The details of the master and slave blocks and their func-
tioning are described in Section 3.1

rnayy

start destination sclin sdain clock data_in bus_in
address
IMaster block Slave block
sclout sdacut data_out bus_out

N

Fig. 4. Functional block diagram of the network interface

3.1 Master Block

The block diagram (Fig. 5) below shows the details of the master block.

196 Venkateswaran P., Sanyal A., Das S., Sanyal S. and Nandi R.

Master Master_buffer

d47-d0 47-
— start data_in <:#:> int data_out et data_out %

| busin wamsmit |~ | int rx BEbrm |
clock receive it t% .
E— - —— -
- sdain end_of data I int_owf ext ovf |
- sclin overflow I int_eod ext eod | o
al-al 47-d0 -
address data_out ﬂ¢:j int_data_in ext_data_in %

sdaout busout sclout

N

Fig. 5. Functional block diagram of the master

The master block has its own buffer where data to transmitted can be stored by the
user(external data) or the data received from the slave can be stored by the master
(internal data). The buffer has a fixed capacity, and if the master or the external user
tries to send more data to the buffer while it is full, the buffer will generate overflow
signal(ext_ovf or int_ovf). Similarly, the buffer will generate the end of data sig-
nal(ext_eod or int_eod) if any attempt is made to retrieve data from the buffer while it
is empty. The master has five main functional units: a) Initiator b) Address Block c)
Write Block d) Read Block e) Clock generator. The functioning of the master block
is given below:

Step 1: When the master has to perform any data transfer, the Initiator senses
whether the bus is free. If the bus is free, it pulls the BUS line to a low and enables
the clock generator which generates the clock for data transfer, and the Address
Block.

Step 2: The Address Block sends each bit of the address byte on the SDA line on
falling edges of the SCL and also checks whether the data on the SDA line is what it
has sent. If the data on the SDA line does not match with the address bits, the Ad-
dress Block senses that it has lost control of the bus to another master and sends the
signal “Control-add” to the Initiator which then frees its SDA, SCL and BUS lines.
After completion of address sending, the Address Block frees the SDA line for the
slave to send acknowledge (ACK). If the slave sends an ACK, then it sends a signal
“over-add” to the Initiator which then enables the read or write block. If the slave
sends a NAK, it sends a signal “error-add” to the Initiator which then terminates the
transfer.

Step 3: The Write Block transfers data to the slave on the SDA line at falling
edges of the SCL. It also checks whether the data on the SDA line is the same as the
data it has sent, and waits for the ACK from the slave after transfer of each byte. If
there is a NAK from the slave, it reports to the Initiator which then terminates the
transfer.

FPGA Based Efficient Interface Model for Scale-Free Computer Network 197

Step 4: The Read Block reads data from the slave at falling edges of the SCL. Af-
ter reception of each byte, it sends an ACK to the slave or NAK if it wishes to termi-
nate the transfer.

3.2 Slave Block

The block diagram (Fig. 6) below shows the details of the slave block

Hlave Slave_buffer
d data_in 4r-d 4 4 d7'910
] sdain = <#> mt_data_out ext_data_out %
transmit int_rx
—— t
busin . P e
-~ reveive L~ | mifx ext_tx
end_of data int_ovl f
e ext_ov
| sclin —
overflow | int_god ext eod
al-a d7-d0 B
address data_out <#> int_data_in ext_data_in %
sdaout sclout

I

Fig. 6. Functional block diagram of the master

The Slave Block has four main functional units: (a) Monitor (b) Address Block
(c)Receiver (d)Transmitter. The functioning of the slave block is given below:

Step 1: The Monitor continuously senses the state of the BUS line. If it senses that
the bus line has been pulled to a low state, it senses that a master has captured the bus.
It then enables the Address Block. Step 2: The Address Block checks whether the
address sent by the master on the SDA line matches with it address. In case of a
match, it sends the “add-match” signal to the Monitor which then enables the trans-
mitter or receiver. In case of no match, the Monitor waits for the next “initiate-
transfer” condition.

Step 3: The Receiver is responsible for receiving the data from the master and
sending the ACK (or NAK) to the master. It reads the data at positive edges of the
SCL. On detecting a release of the bus by the master , the receiver is disabled by the
monitor.

Step 4: The Transmitter sends data to the master on the SDA line at positive edges
of the SCL. It also checks for the ACK(or NAK) sent by the master. It terminates the
data transfer on receiving a NAK from the master.

198 Venkateswaran P., Sanyal A., Das S., Sanyal S. and Nandi R.

4 Simulation Results and Conclusion

We have used Modelsim 6.0 IIla to simulate the I°C devices. We have simulated a
network containing three devices. Each of the devices have their own unique address
by which they can be addressed. The address of the devices are given below:

Table 1. Address map of the devices

Device name Device address
devl 1111100
dev2 1111101
dev3 1111110

We have simulated the traffic in the network by using a testbench[4]. The masters of
devices 1 and 2 were given a 8-bit data and their destination addresses were set to the
address of device 3. Both the masters were given the start signal at the same time so
that a conflict occurs. Due to the proposed I°C arbitration specifications, one of the
masters (device 1) wins control of the bus, and its data is transferred to the slave of
device 3 successfully. This can be seen from the simulation results given below (Fig.
7).

111100

111111

11171
11107

1111710

L
LU DU U OO OO O O O 113

LB I L L
500 1us 1500 2us

10 |

Fig. 7. Simulation waveform

References
1. THE I’C BUS SPECIFICATION VERSION 2.1 January 2000, Philips Semiconductors
2. IEEE Standard VHDL Language Reference Manual, 1EEE std 1076-1993 (revision of

1076-1987)
. Fred Eady, Networking and Internetworking with Microcontrollers, Elsevier ,2004
. Y Bhasker 4 VHDL Synthesis Primer, BS Publications 2™ Edition, 2003, pp. 132

W

